Optimizing Dermal Drug Delivery with Material Science: A Case Study

François Bidet | VP Business Development Microneedle & Transdermal Delivery Virtual Summit | October 5th, 2021

About Aptar CSP Technologies

- Joined AptarGroup in August 2018
- Premier active material science solutions expert delivering innovative, highly-engineered, active packaging solutions
- Headquarters Auburn, Alabama, USA, with
 +500 dedicated employees in 4 countries
- +1.2 billion components manufactured annually,
 4 manufacturing locations worldwide (US, France & China)
- +500 worldwide patents
- ISO-9001, ISO-13485 and ISO-14001 certified

Platform Technology Serving Broad Therapeutic Areas

3-Phase Activ-Polymer™ Technology

3-Phase Activ-Polymer™ Material = Platform Material

Material Science: Adding Chemistry to Polymers

3-Phase Polymers

- 1. <u>Majority Polymer</u>: Base structure component
- 2. <u>Particle</u>: Adsorbing/absorbing active component
- 3. <u>Minority Polymer/Channeling Agent</u>: Immiscible in majority polymer

Material Science: Adding Chemistry to Polymers

3-Phase Activ-Polymer™ Material

- Channels created within a polymer allow movement of gases
- "Active" particles are added to the polymer to:
 - Adsorb or Absorb (moisture, gases, reactive impurities, odors, formaldehyde and other volatiles)
 - o Release (aromas, biocides, nutrients, carbon dioxide)
- Gas diffusion controlled through channel composition
- Allow high load of active compound in limited headspace

CSP Activ-Polymer[™] Technology

Active Packaging – Putting Chemistry into Polymers

3-Phase Activ-Polymer™ Material

Allows **control of kinetics** based upon formulation:

- Uptake rate can be increased or decreased
- Absorption capacity can be increased or decreased
- Buffered RH solutions for products susceptible to over-drying

Oxygen "Pull-Down" Performance

Time

Buffered RH Solutions for Products Susceptible to Over-Drying

RH inside inhaler using a custom Aptar CSP 3-Phase Activ-Polymer[™] component throughout storage and use life of device

Active Packaging – Putting Chemistry into Polymers

Tightly Sealed Environment

Utilizing 3-Phase Activ-Polymer[™] technology requires a tightly sealed environment

- Chemistry required determined
- Gas or moisture transmission rates reviewed
- Focus on seals associated with package
- Amount of 3-phase material required depends on how tight of an environment it will be placed in

Active Material Science Platform Technology

Ability to incorporate single or multiple chemistries into a polymer solution that retains the performance of the chemistries while maintaining the physical properties of the polymer

*Applications in development

Microneedle and Transdermal Applications

Microneedle and Transdermal Applications

Microneedle/Micro-Array Patches

- Protection vs moisture
- Protection vs oxygen
- Combo
- Control of Relative Humidity within the headspace
- Sterilization of devices via biocide degassing

Transdermal Patches

- Protection vs moisture
- Protection vs oxygen (reducing the need for N₂ flush or antioxidant compound)
- Dual protection vs moisture and oxygen

Xcelerate Development Services for Transdermal Applications

Complete Solution Service, from Stability Challenge to Product Launch

Xcelerate Development Services awards:

Pharma Manufacturing magazine 2019 All-Star Innovator Award

Medicine Maker magazine 2019 Innovation Award

Case Study

Case Study Introduction

CHALLENGE

- If the RH is too high, Micro-Array shape could be affected
- If the RH is too low, Micro-Array may become brittle

SOLUTION

• Protection of a Micro-Array Patch within a buffered Relative Humidy

Case Study User Requirements

Sponsor Product: Micro-Array Patch (MAP) for Transdermal Drug Delivery Systems

- Moisture protection for target shelf life (24 months at 25°C /60% RH)
- Mechanical protection during transport and use
- Functional performance with applicator device
- Clean room and automated equipment compatible; particulate level and particulate generation control

Additional items:

- All concepts will be bi-injection design with Activ-Polymer[™]
- Color options available
- Surface finish options available for improved grip
- Interior features will be designed for compatibility with activation device

Co-Development Process for MAP Protective System

Steps in the Process with Established Milestones and Deliverables to Sponsor

Stage 1: RH Assessment & Specification Development

Draft Requirements / Specifications

To Define Primary Functions and Secondary Functions

Activ-Polymer™ Solution

- Formulation
- Weight
- Moisture Pre-loading
- Format of Activ-Polymer[™] (molded component, bi-injection, film, etc.)

Draft Drawing

Stage 1: RH Assessment & Specification Development

Specification

• Meeting and/or teleconference with partners to determine functionality of product

Deliverables

- Recommendation based on Proxy Study
 - Defined RH range for MAP at specific conditions
- Establish product requirement list including:
 - Specification of each component of the primary packaging: desiccant, molded parts and potential adhesive
 - Description of process (conditions, requirements)
 - Conditions of packaging, storage and use
 - Specification of tertiary packaging of each component and final product

Proxy Study: 24 ml Vial and Activ-Polymer™

"Proxy vial" is an existing container: Use a foil sealed on the top (cap will be removed)

- 24ml Vial
- Ingress 50 µg/day with aluminum foil seal (TBC)

- Add Activ-Polymer[™] piece with requested weight
- Fill with beads or a spacer made of PP (same material as vial) to achieve air volume of 3ml

Proxy Vial: 24ml with Components

With space for sponsor Micro-Array Patch

Aluminum foil

Activ-Polymer™ puck 0,64g M-XXXX

Data logger Space for MAP diameter 16mm

Spacer made of metal or PP

24ml vial

Micro-Array:

- Diameter: approx. 10mm
- Height: approx. 1mm

With components, headspace is 1,45cm³

Stage 1: RH Assessment & Specification Development

Key Components:

- Proxy Study: 24ml vials, Activ-Polymer™ puck and data logger
- Foil sealing to close Proxy Vial
 - Variable headspace and RH levels
 - Testing without MAP

Deliverables to sponsor:

- Design proxy product and raw material recommendation (3D model)
- Production of components (vial, puck and spacer) for proxy study
- RH characterization in proxy product at 3 different external conditions and 3 different durations.
- Moisture Budget Assessment based on study results.
- Supply same proxy product to sponsor for MAP performance and moisture specification determination for primary package

Stage 1: RH Assessment & Specification Development

		PREDICTED VI	AL PERFORMANCE				
Produced on			12/03/2019	BY: GRF			
Assumptions and notes	3	Updated on		BY:			
Customer Name	IIS						
Product Description	Proxy product						
# sensors/vial =			1			Input	
# of openings @ CSP			1			Calculated result	
# of openings @ Customer			1				
Vial Inner Diameter			22 mm		Instruction		
Vial Inner Height			8 mm		1. Choose calculation		
Plug Inner Diameter (for standard vials enter 0)			0 mm		result in gray has		
Plug Height (for standard vials enter 0)			0 mm		result in gray	DOX .	
Vial Internal Volume			3,041 cm ²		2 Adjusting	ute to change	
Desiccant Weight			0,64 g		z. Aujust inp	ats to change	
Minimum Molecular Sieve Loading			60 %				
Usable Desiccant Capacity to maintain 15% RH			20 %		Coloriste Server		
Minimum Capacity			77 mg		# Calculate Theoretical Theffulfs		
Ingress USL @ 30 °C / 75% RH			100 (µg/day	v)	 Céleviste Theoretiesi Sfell Ule 		
		22 °C / 80% RH	68 (µg/day)				
		25 °C / 60% RH	61 (ug/day)				
Maximum Ingress at Different Conditions		30 °C / 65% RH	87 (us/day)				
		30 °C / 70% RH	93 (us/day)				
		25 °C / 93% RH	94 (us/day)				
		30 °C / 75% RH	100 (us/day)				
		30 °C / 80% RH	107 (ug/day)				
		40 °C / 75% RH	158 (ug/day)				
		Temperature and	Mass of Water Vap	or Maxi	mum ingress		
		Humidity	(#/cm ²)		lug/day]	Foil Bag (Y/N)	
CSR Mapufacturing conditions		25 °C / 60% BH	0.00001387		51	N	
CSP Storage Conditions		25 °C / 60% BH	0.00001387		51	v	
Curtamer Storage Conditions		25 °C / 60% PM	0.00001297		61	v	
Customer Manufacturing conditions		25 °C / 60% PM	0,00001387		61	N	
Shelf conditions		20 °C / 75% PM	0.00002284		100	N	
		20 07 7270101	0,0000000		200		
I. Calculations							
1	MaMid				0.1 mm		
2	C SP Manufacturing L	fe Opening			0,1 mg		
•	Mare water vacor in v	ial after onen			47		
	Mass water vapor, in v	araner open			P5		
	Number of openings						
	storage @ C SD			6,1	742 mg		
~	Automatic Manager and Manager and Starsage				1		
	Maximum Humber of Hears of Storage				A years		
	Storage & Carlleton				0,4 mg		
4	storalla fil controller				4		
	Maximum Number of Years of Storage				a years		
,	Customer Manufacturing Life Oneping				0,4 mg		
5	coatomer wandracturing the opening						
	Mass water vapor, in vial arter open				42 HS		
	Number of openings				1		
	Customer Manufacturing Life Opening load			0,1	Jez mg		
6	Molature in Each sensor			c	,05 mg		
	Total Moisture from Sensors				.05 mg		
7	Molature From Patient Opening 1 Time			0,0	bea mg		
	Total Moisture from Use Life Openings				0,1 mg		
8	sneif Storage						
	Minimum Number of Po	Minimum Number of Potential Years of Storage @ 30 °C / 75% / 2,08 years					
1	Shelf Storage load						
	Grand total moleture	bad			77 mg		

Sample data: Moisture ingress

Stage 2: System Development

Stage 2: System Development

Key Components:

- Rapid prototype models of selected designs
- Proxy Study II: Demo samples
- Material development and selection with compliance statement
- Test methodology development
- Moisture budget (updated)
- Package/Specification development
- Product and packaging spec and drawings

Deliverables:

- Demo samples
- RH characterization and MAP performance study
- Moisture pre-loading process development
- Mechanical performance and specifications
- Bulk package design and related shelf-life
- Design freeze & verification with regulatory review

CoDev End of Phase I

- Ready for Phase 2 Stage 3 (pilot mold for stability studies)
- Limit risks due to Proxy Study and validation of the specifications
- Expedite time to market

Thank You For Your Attention!

Email: francois.bidet@aptar.com